Свойства алюминия
Физические свойства алюминия
Основные физические свойства алюминия и алюминиевых сплавов, которые являются полезными для применения:
- плотность или удельный вес;
- температура плавления;
- коэффициент теплового расширения;
- теплопроводность;
- электропроводность.
Эти свойства алюминия представлены ниже в таблицах [1]. Они могут рассматриваться только как основание для сравнения сплавов и их состояний и не должны применяться для инженерных расчетов. Они не являются гарантированными величинами, поскольку в большинстве случаев являются осредненными значениями для изделий с различными размерами, формами и методами изготовления. Поэтому они не могут быть в точности репрезентативными для изделий любых размеров и форм.
Номинальные величины плотности популярных алюминиевых сплавов представлены для отожженного состояния (О). Различия в плотности связаны с тем, что сплавы имеют различные легирующие элементы и в разных количествах: кремний и магний легче алюминия (2,33 и 1,74 г/см3), а железо, марганец, медь и цинк – тяжелее (7,87; 7,40; 8,96 и 7,13 г/см3).
О влиянии физических свойств алюминия и, в частности, его плотности, на конструкционные характеристики алюминиевых сплавов см. здесь.
Алюминий как химический элемент
- Алюминий является третьим по распространенности – после кислорода и кремния – среди около 90 химических элементов, который обнаружены в земной коре.
- Среди элементов-металлов – он первый.
- Этот металл обладает многими полезными свойствами, физическими, механическими, технологическими – благодаря которым он широко применяется во всех сферах человеческой деятельности.
- Алюминий – это ковкий металл, который имеет серебристо-белый цвет и легко обрабатывается большинством методов обработки металлов давлением: прокаткой, волочением, экструзией (прессованием), ковкой.
- Его плотность – удельный вес – составляет около 2,70 граммов на кубический сантиметр.
- Чистый алюминий плавится при температуре 660 градусов Цельсия.
- Алюминий имеет относительно высокие коэффициенты теплопроводности и электропроводности.
- В присутствии кислорода всегда покрыт тонкой, невидимой пленкой оксида. Эта пленка является в значительной степени непроницаемой и имеет довольно высокие защитные свойства. Поэтому алюминий обычно демонстрирует стабильность и длительный срок службы при нормальных атмосферных условиях.
Комбинация свойств алюминия и его сплавов
Алюминий и его сплавы обладают уникальными комбинациями физических и других свойств. Это сделало алюминий одним из наиболее разносторонних, экономически выгодных и привлекательных конструкционных и потребительских материалов. Алюминий находит применение в очень широком диапазоне – от мягкой, очень пластичной упаковочной фольги до самых ответственных космических проектов. Алюминий по праву является вторым после стали среди многочисленных конструкционных материалов.
Низкая плотность
Алюминий – это один из самых легких промышленных конструкционных. Плотность алюминия приблизительно в три раза ниже, чем у стали или меди. Это физическое свойство обеспечивает ему высокую удельную прочность – прочность на единицу массы.
Рисунок 1.1 – Объем единицы веса алюминия в сравнении с другими металлами [3]
Рисунок 1.2 – Влияние легирующих элементов на
прочностные свойства, твердость,
хрупкость и пластичность [3]
Рисунок 1 – Прочность на единицу плотности алюминия в сравнении с различными металлами и сплавами [3]
Рисунок 2 – Кривые растяжения алюминия в сравнении с различными металлами и сплавами [3]
Поэтому алюминиевые сплавы широко применяют в транспортном машиностроении для увеличения грузоподъемности транспортных средств и экономии топлива.
- Паромные катамараны,
- нефтяные танкеры и
- самолеты –
вот лучшие примеры применения алюминия в транспорте.
Рисунок 3 – Плотность алюминия в зависимости от его чистоты и температуры [2]
Коррозионная стойкость
Алюминий имеет высокую коррозионную стойкость благодаря тонкому слою оксида алюминия на его поверхности. Эта оксидная пленка мгновенно образуется, как только свежая поверхность алюминия входит в контакт с воздухом (рисунок 4). Во многих случаях это свойство позволяет применение алюминия без какой-либо специальной обработки поверхности. Если требуется дополнительное защитное или декоративное покрытие, то применяют анодирование или окраску его поверхности.
Рисунок 4
а – естественное оксидное покрытие на сверхчистом алюминии;
б – коррозия алюминия чистотой 99,5 % с естественным оксидным покрытием
в коорозионно агрессивной среде [2]
Рисунок 5.1 – Влияние легирующих элементов на коррозионную стойкость и усталостную прочность [3]
Рисунок 5.2 – Точечная коррозия (питтинговая коррозия) алюминиевых листов
из сплава 3103 в различных коррозионных условиях [3]
Прочность
Прочностные свойства чистого алюминия являются довольно низкими (рисунок 6). Однако эти механические свойства могут возрастать очень сильно, если в алюминий добавляют легирующие элементы и, кроме того, его подвергают термическому (рисунок 6) или деформационному (рисунок 7) упрочнению.
Типичными легирующими элементами являются:
- марганец,
- кремний,
- медь,
- магний
- и цинк.
Рисунок 6 – Влияние чистоты алюминия на его прочность и твердость [2]
Рисунок 7 – Прочностные свойства высокочистых деформируемых
алюминиево-медных сплавов в различных состояниях [2]
(О – отожженный, W – сразу после закалки, Т4 – естественно состаренный, Т6 – искусственно состаренный)
Рисунок 8 – Механические свойства алюминия 99,50 %
в зависимости от степени полученной холодной деформации [2]
Рисунок 2 – Влияние легирующих элементов на плотность и модуль Юнга [3]
Прочность при низких температурах
Известно, что сталь становится хрупкой при низких температурах. Алюминий же, напротив, при низких температурах повышает свою прочность и сохраняет высокую вязкость. Именно это физическое свойство дало возможность его применения в космических аппаратах, которые работают в условиях космического холода.
Рисунок 9 – Изменение механические свойства алюминиевого сплава 6061
с понижением температуры
Теплопроводность
Алюминий проводит тепло в три раза быстрее, чем сталь. Это физическое свойство является очень важным в теплообменных аппаратах для нагрева или охлаждения рабочей среды. Отсюда – широкое применение алюминия и его сплавов в кухонной посуде, кондиционерах воздуха, примышленных и автомобильных теплообменниках.
Рисунок 10 – Теплопроводность алюминия в сравнении с другими металлами [3]
Отражательная способность
Алюминий является отличным отражателем лучистой энергии во всем интервале длин волн. Это физическое свойство позволяет применять его в приборах, которые работают от ультрафиолетового спектра через видимый спектр до инфракрасного спектра и тепловых волн, а также таких электромагнитных волн, как радиоволны и радарные волны [1].
Алюминий имеет способность отражать более 80 % световых волн, что обеспечивает ему широкое применение в осветительных приборах (рисунок 11). Благодаря этому физическому свойству он находит применение в теплоизоляционных материалах. Например, алюминиевая кровля отражает большую долю солнечного излучения, что обеспечивает в помещениях прохладную атмосферу летом и, в то же время, сохраняет тепло помещения зимой.
Рисунок 11 – Отражательные свойства алюминия [2]
Рисунок 12 – Отражательные свойства и эмиссивность алюминия с различной обработкой поверхности [3]
Рисунок 13 – Сравнение отражательных свойств различных металлов [3]
Электрические свойства
- Алюминий является одним из двух доступных металлов, которые имеют достаточно высокую электрическую проводимость, чтобы применять их в качестве электрических проводников.
- Электрическая проводимость «электрической» марки алюминия 1350 составляет около 62 % от международного стандарта IACS – электрической проводимости отожженной меди.
- Однако удельный вес алюминия составляет только треть от удельного веса меди. Это означает, что он проводит в два раза больше электричества, чем медь того же веса. Это физическое свойство обеспечивает алюминию широкое применение в высоковольтных линиях электропередачи (ЛЭП), трансформаторах, электрических шинах и цоколях электрических лампочек.
Рисунок 14 – Электрические свойства алюминия [3]
Магнитные свойства
Алюминий обладает свойством не намагничиваться в электромагнитных полях. Это делает его полезным при защите оборудования от воздействия электромагнитных полей. Другим применением этого свойства является компьютерные диски и параболические антенны.
Рисунок 15 – Намагничиваемость алюминиевого сплава AlCu [3]
Токсические свойства
Это свойство алюминия – отсутствие токсичности – было обнаружено еще в начале его промышленного освоения. Именно это свойство алюминия дало возможность его применения для изготовления кухонной посуды и приборов без какого-либо вредного воздействия для тела человека. Алюминий со своей гладкой поверхностью легко поддается чистке, что важно для обеспечения высокой гигиены при приготовлении пищи. Алюминиевая фольга и контейнеры широко и безопасно применяются при упаковке с прямым контактом с продуктами.
Звукоизоляционные свойства
Это свойство алюминия дает ему применение при выполнении звукоизоляции потолков.
Способность поглощать энергию удара
Алюминий имеет модуль упругости в три раза меньший, чем у стали. Это физическое свойство дает большое преимущество для изготовления автомобильных бамперов и других средств безопасности автомобилей.
Рисунок 16 – Автомобильные алюминиевые профили
для поглощения энергии удара при аварии
Пожаробезопасные свойства
Алюминиевые детали не образует искр при ударе друг о друга, а также другие цветные металлы. Это физическое свойство находит применение при повышенных мерах пожарной безопасности конструкций, например, на морских нефтяных вышках.
Вместе с тем, с повышением температуры выше 100 градусов Цельсия прочность алюминиевых сплавов значительно снижается (рисунок 17).
Рисунок 17 – Прочность при растяжении алюминиевого сплава 2014-Т6
при различных температурах испытания [3]
Технологические свойства
Легкость, с которой алюминий может быть переработан в любую форму – технологичность, является одним из наиболее важных его достоинств. Очень часто он может успешно конкурировать с более дешевыми материалами, которые намного труднее обрабатывать:
- Этот металл может быть отлит любым методом, который известен металлургам-литейщикам.
- Он может прокатан до любой толщины вплоть до фольги, которая тоньше листа бумаги.
- Алюминиевые листы можно штамповать, вытягивать, высаживать и формовать всем известными методами обработки металлов давлением.
- Алюминий можно ковать всеми методами ковки
- Алюминиевая проволока, которую волочат из круглого прутка, может затем сплетаться в электрические кабели любого размера и типа.
- Почти не существует ограничений формы экструдировванных профилей, в которые получают из этого металла методом экструзии.
Рисунок 18.1 – Литье алюминия в песчаную форму
Рисунок 18.2 – Непрерывная разливка-прокатка алюминиевой полосы [5]
Рисунок 18.3 – Операция высадки при изготовлении алюминиевых банок [4]
Рисунок 18.4 – Операция ковки алюминия
Рисунок 18.5 – Холодное волочение алюминия
Рисунок 18.6 – Прессование (экструзия) алюминия
Источники:
- Aluminium and Aluminium Alloys. – ASM International, 1993.
- A. Sverdlin Properties of Pure Aluminum // Handbook of Aluminum, Vol. 1 /ed. G.E. Totten, D.S. MacKenzie, 2003
- TALAT 1501
- TALAT 3710