Механические соединения алюминия

Соединение деталей друг с другом является важной и часто критической операцией при производстве изделий и конструкций из алюминиевых листов или профилей. Механические методы  обеспечивают высокую прочность соединения, а также являются удобными при производстве и контроле качества. Кроме того, механические методы соединения алюминиевых деталей не требуют дорогого оборудования, удобны в применении и могут быть легко автоматизированы [1].

Основными типами механических соединений алюминиевых деталей являются:

  • винтовые соединения;
  • фальцовые соединения;
  • заклепочные соединения.

Винтовые соединения

Типы винтовых соединений

Винтовые соединения относятся к разъемным соединениям. По своей конструкции они могут быть (рисунок 1):

  • сквозными, выступающие с обеих сторон;
  • сквозные, выступающие с одной стороны;
  • не сквозные (слепые), выступающие с одной стороны.

Рисунок 1 – Конструкционные типы винтовых соединений [1]

Если приняты соответствующие меры против коррозии, то винтовые соединения являются вполне подходящими для компонентов из листового алюминия и алюминиевых профилей:

  • Крепежные элементы должны быть выполнены из коррозионностойкой нержавеющей стали (группа сталей А2/А4).
  • Поскольку алюминиевые сплавы имеют относительно низкую прочность на сжатие, поверхности контакта должны быть защищены путем применения шайб как под головку винта, так и под гайку.

Типы винтовых соединений для тонких листов

В дополнение к методам соединения типа “винт-гайка” тонкие листы могут соединяться вместе с применением большого количества различных резьбовых крепежных изделий (рисунок 2).

Рисунок 2 -Различные типы винтовых соединений для тонких листов [2]

С помощью крепежных изделий типа “винт-гайка” обеспечивается большие усилия скрепления. С другой стороны, специальные винты для тонкостенных деталей применяют, чтобы исключить операцию сверления при окончательной сборке, так как эти винты сами прорезают отверстие для себя.

Принцип работы самонарезающих винтов

Недостатком большинства тонкостенных соединений является очень ограниченная длина винта, которая несет нагрузку. Улучшить положение может формировании вокруг отверстия цилиндрического буртика, что и происходит при установке самонарезающего винта. Карбидный наконечник самонарезающего винта, у которого нет резьбы, действует как конусный пробойник, который вращается с большой скоростью и пробивает металл насквозь. В результате пластического деформирования металла листа вокруг отверстия формируется массивный буртик. Затем в этом отверстии самонарезающий винт нарезает резьбу и выполняет винтовое соединение (рисунок 3).


Рисунок 3 – Принцип установки самонарезающего винта [1]

Винтовые соединения для алюминиевых профилей

Для соединения деталей из алюминиевых сплавов чаще всего применяют винты из коррозионностойкой нержавеющей стали с головкой, которая приспособлена для крепления листовых материалов. Алюминиевые профили для соединения между собой или с листовыми материалами могут иметь продольные и поперечные винтовые каналы (или пазы) (рисунок 4).


Рисунок 4 – Винтовые соединения для алюминиевых профилей [1]

Фальцевые соединения

Принцип выполнения фальцевого соединения алюминиевых листов показан на рисунке 4.

 


Рисунок 5 – Этапы процесса выполнения фальцевого соединения
для листов с прямолинейной кромкой [1]

 В зависимости от назначения могут выполняться различные формы фальцевых соединений. Ширина фальца имеет особое значение для каждого конкретного случая. Слишком узкий фальц имеет низкую прочность и низкую герметичность, а слишком широкий фальц приводит к чрезмерному расходу листового материала (рисунок 6).


Рисунок 6 – Ширина нахлеста в фальцевых соединениях:
неправильная (вверху) и правильная (внизу) [1]

Заклепочные соединения

Непрямая и прямая клепка

Долгое время соединение заклепками считалось устаревшим и неэкономичным. Однако в последние десятилетия 20 века соединение заклепками было заново открыто как эффективная технология, особенно в аэрокосмической технике. Для алюминия применяют методами непрямой и прямой клепки (рисунок 7). В процессе непрямой клепки детали соединяются путем притягивания друг к другу с помощью дополнительного соединительного элемента – отдельной заклепки. При прямой клепке одна из соединяемых деталей сама является заклепочным элементом и дополнительная отдельная заклепка не требуется.   


Рисунок 7 –  Типы клепки: непрямая и прямая [1]

Типы заклепок для непрямой клепки алюминия

В настоящее время для выполнения неразъемных (постоянных) заклепочных соединений применяется четыре основных типа заклепок для непрямой клепки:

  • сплошные заклепки (рисунок 8);
  • вытяжные (слепые) заклепки (рисунок 8);
  • винтовые (резьбовые) заклепки (рисунок 8);
  • самопробивные заклепки (рисунок 9).


Рисунок 8 – Три типа заклепок [1]


Рисунок 9 – Самопробивные заклепки [2]

Сплошная заклепка – это стержень с головкой на одном конце, а на другом его конце в процессе клепки пластически формуется другая, крепежная, головка. Такие заклепки могут применяться только для компонентов, которые имеют доступ с обеих сторон.

Слепая заклепка (вытяжная) состоит из одного или более элементов и требует доступ только с одной стороны.

Винтовая заклепка применяется для сильно нагруженных заклепочных соединений. Поэтому эти заклепки делают из высокопрочных материалов, которые не могут легко деформироваться при установке заклепки.

Самопробивная заклепка сами пробивают отверстие для своей установки и не требуют предварительно выполненного отверстия.

Применение различных головок заклепок

Заклепки различают по виду головки, которая формируется при установке заклепки. Для листового металла и легких конструкций, которые не требуют заклепок толще, чем 8 мм, обычно применяют такие крепежные головки как и головки на исходных заклепках. Алюминиевые заклепки диаметром до 8 мм легко поддаются холодной пластической деформации (рисунок 10).


Рисунок 10 – Различные типы заклепочных головок и их применение [1]

 Принцип работы вытяжной (слепой) заклепки

Обычно вытяжная (слепая) заклепка состоит из полого стержня и вытяжного сердечника, который служит инструментом для формирования крепежной головки.

Заклепка устанавливается путем вытягивания сердечника с помощью специального инструмента – “заклепочника”. В результате из стрежня заклепки формируется крепежная головка (рисунок 11). Когда усилие вытягивания превысит некоторый уровень, сердечник обрывается в заданном месте. Место разрыва может внутри втулки или в головке заклепки.


Рисунок 11 –  Принцип установки вытяжной заклепки [1]

Предотвращение гальванической коррозии

Материалы механических крепежных элементов и соединяемые компоненты должны быть совместимы с точки зрения коррозии. Это означает, что детали, которые находятся в контакте друг с другом должны иметь близкие электрохимические потенциалы для предотвращения гальванической коррозии.  Например, крепежные элементы из меди или латуни не подходят для соединения алюминиевых деталей.

Источники:

  1. TALAT 4101 – Definition and Classification of Mechanical Fastening Methods
  2. TALAT 4103 – Self-Piercing Riveting