Aluminum metallography: preparation of microsections

The study of microstructures is one of the chief means of study of various metals and alloys, including aluminum and aluminum alloy. This makes it possible to determine the effect of different deformation and heat treatments on the properties of the finished aluminum products, as well as to analyze the reasons of her marriage.

The main changes in the microstructure aluminum and aluminum alloys occur during their solidification from the liquid state, gomogenïzacïï, hot or cold working, annealing, aging. A good interpretation of the structure makes it possible to reveal the full story of technological sample.

aluminum Metallography

Generally metallography of aluminum and its alloys is a rather difficult task. The thing is, that aluminum alloys have a great variety of chemical composition and a very wide range of hardness and other mechanical properties. Therefore, techniques, which are used for microscopic examination of samples of aluminum, can vary significantly for soft and hard aluminum alloy. Moreover, one and the same aluminum alloy may have multiple microstructural features and characteristics, such as aluminum base, secondary phase, dispersoids, grains, subzerna, as well as the grain boundaries and subgrains. All these components of the microstructure are shown in various combinations depending on the type of alloy and its deformation and thermal history. At the same time, Some methods of sample preparation and research are common to all aluminum alloys. In some cases require special microstructure research methods.

Microsection for light microscopy

On practice, especially in the factory, commonly used light microscopy. electron microscopy, More sophisticated and expensive, often used in scientific research.

Principles for preparing specimens for light microscopy - microsections - generally of aluminum alloys such as, like most other metals. Before cutting out the sample and etching is necessary to examine it carefully. If we study the surface of fracture, it is necessary to reliably protect it from damage and contamination.

The selected portion of the material was cut with an abrasive saw blade at a distance from the plane, which will be studied. It's necessary, as several tens of micrometers is removed by mechanical grinding,. To prevent heating of the sample and the sample structure changes coolant used during the cutting.

Preparation microsection surface

First, an approximately flat surface is obtained (by filing, abrasive processing). For convenience, this operation, samples were placed in a special clamp of two plates or poured, for example, in the epoxy resin.

Fill carried out as follows. A round or square mandrel is mounted on a metal or ceramic plate (for example, steel). Inside the mandrel is placed in such a way the sample, prepares to face rested on the plate. Then, an epoxy resin with a hardener is poured into the mandrel.

grinding microsection

After receiving the approximately flat surface of the sample was polished with sandpaper, which for this purpose is placed on a flat base (usually on glass) or fixed on a rotating circle.

Grinding is carried out successively sandpaper with different grain size - first coarse, and then fine-grained.

When changing the grade of paper - Skin - 90º changed to the direction of movement of emery paper sample relative to the direction the circle. This gives better removal of ridges and scratches from the previous grinding. abrasive particles from the surface of the sample after grinding is removed by blowing air or, it's better, washing with water.

In the grinding of most aluminum alloys - very soft - sandpaper pre-soaked in kerosene, rub paraffin or just moistened with water.

polishing microsection

Remaining after grinding small risks are removed by polishing. Typically mechanical polishing used, as well as chemical-mechanical and electrochemical.

Mechanical polishing to produce a rotating wheel with a stretched or glued polishing material - felt, velvet or broadcloth. The polishing material is continuously or intermittently coated with an abrasive substance with very small particles (aluminum oxide, iron oxide, chromium oxide).

Buff should be moist, and the pressure of the sample at him slightly. The rotation speed range in diameter 250 mm should be 400-600 rpm.

Polishing completed microsection believe, when its surface acquires a high gloss, and even under the microscope is not visible scratches or risks.

losetummyfatquick mikroşlifa

after polishing, regardless of the manner of its implementation, microsection washed with water, then wiped with alcohol and dried with filter paper.

Travlenie mikroşlifa

After polishing microsection ready to be etched. Etching is substantially controlled process of electrolytic corrosion resulting from the interaction between the surface regions with different potentials. For pure metal alloys or single-phase potential occurs between different grain oriented, between the grain boundaries and the inner portions of the grains, between impurity phases and the aluminum matrix, or portions with different chemical composition.

These differences in the potentials and give a different dissolving various metal or alloy components and, in the end, identifying the microstructure. Therefore, the quality of the polishing effect on the development of the true microstructure. Incorrect preparation of the sample surface may distort the information on the structure.

Etchants for aluminum and its alloys

etchants, which are used for microscopic examination of aluminum alloys, quite a lot - at least, than a dozen. The greatest use of them in practice found Keller reagent, 1 %-ny NaOH solution and 0,5 %-hydrofluoric acid solution was.

reagent Keller

Keller Reagent:
– 2 ml hydrofluoric acid HF (48 %);
– 3 ml of hydrochloric acid HCl;
– 5 ml 190 ml water H2O.
This etchant provides an opportunity to identify and highlight the grain boundaries in many wrought alloys.

A solution of caustic soda NaOH

1 %-caustic soda solution was used for detection of grain boundaries in the aluminum alloys of the 6xxx series, including, popular 6060 or AD31.

A solution of hydrofluoric acid

0,5 %-hydrofluoric acid solution (1 ml of hydrofluoric acid (48 %) on 200 ml of water) is used to identify the components of cast aluminum alloys, particularly those containing silicon.

It should be noted, what, for example, grain structure are not always easily detected by conventional etchants in all aluminum alloys. In thin sections of alloy with a low doping gives such etching step to diffuse the grain boundaries, which do not provide a good contrast microscope. In such cases, for the preparation of thin section surface used anodizing.

anodizing thin section

Anodizing or anodic oxidation electrolytic process is, which results in the formation of an oxide film on the metal surface. the film growth direction oriented along the crystal lattice on the respective grain surface of the polished section. As a result, thin section surface anode film formed with varying thickness at different grains. This makes it possible to reveal the grain structure when illuminated with polarized light.

Anodizing apply a so-called Barker solution - 5 ml of HBF4 (48 %) on 200 ml of water. The process is carried out at a current density 0,2 A / cm2 during 40-80 seconds at room temperature.

Sources:
1. TALAT 1202
2. Aluminium and Aluminium Alloys