Плотность алюминия
1 Легкий конструкционный металл
Малая плотность является одним из главных преимуществ алюминия по сравнению с другими конструкционными металлами.
Figure 1 – Density-Related Strength of Aluminium in
Comparision with Various Metals and Alloys.
Aluminium alloy 7075 is found at the top.
The commercial structural alloys is found
above the common mild steel [1]
Figure 2 – Volume per Unit Weight of Various Metals.
It is important to compare the cost of aluminium with other materials on this basis [1]
2 Плотность цветных металлов
Плотность алюминия в сравнении с плотностью других легких металлов:
- алюминий: 2,70 г/см3
- титан: 4,51 г/см3
- магний: 1,74 г/см3
- бериллий: 1,85 г/см3
3 Плотность материалов
3.1 Плотность
Плотность алюминия и любого другого материала – это физическая величина, определяющая отношения массы материала к занимаемому объему.
- Единицей измерения плотности в системе СИ принята размерность кг/м3.
- Для плотности алюминия часто применяется более наглядная размерность г/см3.
Плотность алюминия в кг/м3 в тысячу раз больше, чем в г/см3.
3.2 Удельный вес
Для оценки количества материала в единице объема часто применяют такую не системную, но более наглядную единицу измерения как «удельный вес». В отличие от плотности удельный вес не является абсолютной единицей измерения. Дело в том, что он зависит от величины гравитационного ускорения g, которая меняется в зависимости от расположения на Земле.
3.3 Зависимость плотности от температуры
Плотность материала зависит от температуры. Обычно она снижается с увеличением температуры. С другой стороны, удельный объем – объем единицы массы – возрастает с увеличением температуры. Это явление называется температурным расширением. Оно обычно выражается в виде коэффициента температурного расширения, который дает изменение длины на градус температуры, например, мм/мм/ºС. Изменение длины легче измерить и применять, чем изменение объема.
3.4 Удельный объем
Удельный объем материала – это величина, обратная плотности. Она показывает величину объема единицы массы и имеет размерность м3/кг. По удельному объему материала удобно наблюдать изменение плотности материалов при нагреве-охлаждении.
На рисунке ниже показано изменение удельного объема различных материалов (чистого металла, сплава и аморфного материала) при увеличении температуры. Пологие участки графиков – это температурное расширение для всех типов материалов в твердом и жидком состоянии. При плавлении чистого металла происходит скачок повышения удельного объема (снижения плотности), при плавлении сплава – быстрое его повышение по мере расплавления в интервале температур. Аморфные материалы при плавлении (при температуре стеклования) увеличивают свой коэффициент температурного расширения [2].
Figure 3 – Changes in volume per unit weight (1/density)
as a function of temperature for a pure metal, alloy, and glass [2]
4 Плотность алюминия
4.1 Теоретическая плотность алюминия
- The theoretical room-temperature (20 “C) density based on lattice spacing is 2698.72 kg/m3
- Experimental values range from 2696,6 to 2698,8 kg/m3 for polycrystalline material with the densities of single crystals lying 0.34% higher [1].
4.2 Плотность алюминия: твердого и жидкого
График зависимости плотности алюминия в зависимости от температуры представлена на рисунке ниже [1]:
- С повышением температуры плотность алюминия снижается.
- При переходе алюминия из твердого в жидкое состояние его плотность снижается скачком с 2,55 до 2,34 г/см3.
4.3 Влияние чистоты алюминия
Влияние степени чистоты твердого и жидкого алюминия на его плотность показана на рисунке 6.
Figure 4 – The density of solid and molten 99,996% aluminum (a – solid, b – molten) [3]
Figure 5 – The density of molten 99,996% aluminum [4]
Figure 6 – Влияние степени чистоты твердого и жидкого алюминия на его плотность [3]
5 Алюминиевые сплавы
5.1 Влияние легирования
Различия в плотности различных алюминиевых сплавов обусловлены тем, что они содержат различные легирующие элементы и в разных количествах. С другой стороны, одни легирующие элементы легче алюминия, другие – тяжелее.
Легирующие элементы легче алюминия:
- кремний (2,33 г/см³),
- магний (1,74 г/см³),
- литий (0,533 г/см³).
Легирующие элементы тяжелее алюминия:
- железо (7,87 г/см³),
- марганец (7,40 г/см³),
- медь (8,96 г/см³),
- цинк (7,13 г/см³).
Влияние легирующих элементов на плотность алюминиевых сплавов показано на рисунке 7 [4].
Figure 7 – Влияние легирующих элементов на плотность алюминиевых сплавов [4]
6 Самые легкие и самые тяжелые алюминиевые сплавы
- Одним из самых легких алюминиевым сплавом является зарубежный литейный сплав 518.0 (7,5-8,5 % магния) – 2,53 г на кубический сантиметр [1].
- Самыми тяжелыми алюминиевыми сплавами являются зарубежные литейные сплавы 222.0 и 238.0 с номинальным содержанием меди 10 %. Их номинальная плотность – 2,95 г на кубический сантиметр [1].
- Самый легкий деформируемый сплав – алюминиево-литиевый сплав 8090 с номинальным содержанием лития 2,0 %. Его номинальная плотность – 2,55 г на кубический сантиметр [1].
- Самый тяжелый деформируемый алюминиевый сплав – сплав 7175: 2,85 г на кубический сантиметр [4].
7 Плотность промышленных алюминиевых сплавов
7.1 Серии сплавов
Плотность алюминия и алюминиевых сплавов, которые применяются в промышленности, представлены в таблице ниже для отожженного состояния (О). В определенной степени она зависит от состояния сплава, особенно для термически упрочняемых алюминиевых сплавов.
Figure 8 – The Effect of Alloying Elements on Density and Young’s Modulus [1]
7.2 Алюминиево-литиевые сплавы
Самую малую плотность имеют знаменитые алюминиево-литиевые сплавы.
- Литий является самым легким металлическим элементом.
- Плотность лития при комнатной температуре составляет 0,533 г/см³ – этот металл может плавать в воде!
- Каждый 1 % лития в алюминии снижает его плотность на 3 %
- Каждый 1 % лития увеличивает модуль упругости алюминия на 6 %. Это очень важно для самолетостроения и космической техники.
Популярными промышленными алюминиево-литиевыми сплавами являются сплавы 2090, 2091 и 8090:
- Номинальное содержание лития в сплаве 2090 составляет 1,3 %, а номинальная плотность – 2,59 г/см3.
- В сплаве 2091 номинальное содержание лития составляет 2,2 %, а номинальная плотность – 2,58 г/см3.
- У сплава 8090 при содержании лития 2,0 % плотность составляет 2,55 г/см3.
Приложение А
Таблица A1 – Номинальная плотность деформируемых алюминиевых сплавов [4]

Sources:
1. TALAT 1501
2. FUNDAMENTALS OF MODERN MANUFACTURING – Materials, Processes, and Systems /Mikell P. Groover – JOHN WILEY & SONS, INC., 2010
3. Properties of Pure Aluminum / A. Sverdlin // Handbook of Aluminum, Volume 1: Physical Metallurgy and Processes – 2003.
4. Aluminum and Aluminum Alloys, ASM International, 1993.